Accumulation of the Vitamin D Precursor Cholecalciferol Antagonizes Hedgehog Signaling to Impair Hemogenic Endothelium Formation

نویسندگان

  • Mauricio Cortes
  • Sarah Y. Liu
  • Wanda Kwan
  • Kristen Alexa
  • Wolfram Goessling
  • Trista E. North
چکیده

Hematopoietic stem and progenitor cells (HSPCs) are born from hemogenic endothelium in the dorsal aorta. Specification of this hematopoietic niche is regulated by a signaling axis using Hedgehog (Hh) and Notch, which culminates in expression of Runx1 in the ventral wall of the artery. Here, we demonstrate that the vitamin D precursor cholecalciferol (D3) modulates HSPC production by impairing hemogenic vascular niche formation. Accumulation of D3 through exogenous treatment or inhibition of Cyp2r1, the enzyme required for D3 25-hydroxylation, results in Hh pathway antagonism marked by loss of Gli-reporter activation, defects in vascular niche identity, and reduced HSPCs. Mechanistic studies indicated the effect was specific to D3, and not active 1,25-dihydroxy vitamin D3, acting on the extracellular sterol-binding domain of Smoothened. These findings highlight a direct impact of inefficient vitamin D synthesis on cell fate commitment and maturation in Hh-regulated tissues, which may have implications beyond hemogenic endothelium specification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition.

During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for Hh signaling in patternin...

متن کامل

Vitamin D3 inhibits hedgehog signaling and proliferation in murine Basal cell carcinomas.

Constitutive Hedgehog (HH) signaling underlies several human tumors, including basal cell carcinoma (BCC). Recently, Bijlsma and colleagues reported a new biologic function for vitamin D3 in suppressing HH signaling in an in vitro model system. On the basis of that work, we have assessed effects of vitamin D3 on HH signaling and proliferation of murine BCCs in vitro and in vivo. We find that in...

متن کامل

Production of vitamin D3 enriched biomass of Saccharomyces cerevisiae as a potential food supplement: evaluation and optimization of culture conditions using Plackett–Burman and response surface methodological approaches

Vitamin D deficiency causes osteoporosis, osteopenia, fractures, rickets and more recently is linked with some chronic illnesses such as cancer. Because of the safety and probiotic properties of the yeast Saccharomyces cerevisiae, we hypothesized that yeast cells enriched with cholecalciferol (vitamin D3) could represent a solution for prevention or treatment of vitamin D deficiency. In this st...

متن کامل

Production of vitamin D3 enriched biomass of Saccharomyces cerevisiae as a potential food supplement: evaluation and optimization of culture conditions using Plackett–Burman and response surface methodological approaches

Vitamin D deficiency causes osteoporosis, osteopenia, fractures, rickets and more recently is linked with some chronic illnesses such as cancer. Because of the safety and probiotic properties of the yeast Saccharomyces cerevisiae, we hypothesized that yeast cells enriched with cholecalciferol (vitamin D3) could represent a solution for prevention or treatment of vitamin D deficiency. In this st...

متن کامل

Cell signaling directing the formation and function of hemogenic endothelium during murine embryogenesis.

During developmental hematopoiesis, multilineage hematopoietic progenitors are thought to derive from a subset of vascular endothelium. Herein, we define the phenotype of such hemogenic endothelial cells and demonstrate, on a clonal level, that they exhibit multilineage hematopoietic potential. Furthermore, we have begun to define the molecular signals that regulate their development. We found ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015